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We consider the mutual effect of the electron-phonon and strong Coulomb interactions on each other by
summing up leading logarithmic corrections via the renormalization group approach. We find that the Coulomb
interaction enhances electron coupling to the intervalley A1 optical phonons, but not to the intravalley E2

phonons.
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Electron-phonon coupling �EPC� in graphene is currently
a subject of intense research. Experimental information on
EPC is obtained by Raman spectroscopy1–5 and angle-
resolved photoemission spectroscopy.6 Theoretically, EPC
constants are usually calculated from density-functional
theory �DFT�,7–9 where the exchange �Fock� term is treated
in the local density approximation �LDA�,10 or the general-
ized gradient approximation �GGA�.11 Disagreement be-
tween the calculated EPC and the ARPES data has been
pointed out in Ref. 8.

Also, the ratio between calculated EPC constants for dif-
ferent phonon modes disagrees with the ratio of the inte-
grated intensities ID* / IG* of the corresponding two-phonon
Raman peaks, as noted in Ref. 12. Namely, in the Raman
spectrum of graphene, two two-phonon peaks are seen: the
so-called D* peak near 2�A1

=2650 cm−1, and the G* peak
near 2�E2

=3250 cm−1, corresponding to scalar A1 phonons
from the vicinity of the K point of the first Brillouin zone,
and to pseudovector E2 phonons from the vicinity of the �
point, respectively. Experimentally, ID* / IG*�20,1 which
cannot be reproduced with the EPC constants obtained from
DFT calculations.

In this work we consider the mutual effect of weak
electron-phonon and strong Coulomb interactions on each
other by summing up leading logarithmic corrections via the
renormalization group �RG� approach, which goes beyond
the Hartree-Fock approximation. The Coulomb interaction is
known to be a source of logarithmic renormalizations for
Dirac fermions.13–15 Coulomb renormalizations in graphene
subject to a magnetic field have been considered in Ref. 16,
and the Coulomb effect on static disorder in Refs. 17–19. To
the best of our knowledge, Coulomb renormalization of EPC
has never been considered; moreover, at energies higher than
the phonon frequency, EPC itself is a source of logarithmic
renormalizations, and has to be included in the RG proce-
dure.

Upon solution of the RG equations, we obtain that �i�
EPC tends to enhance Coulomb interaction, but not suffi-
ciently to dominate over the flow to weak coupling, found
earlier;15 �ii� Coulomb interaction enhances the EPC only for
the scalar A1 phonons, while renormalization of the coupling
to the pseudovector E2 phonons is due only to EPC and is
relatively weak, in agreement with the Raman data.1

We measure the single-electron energies from the Fermi
level of undoped �half-filled� graphene. The Fermi surface of
undoped graphene consists of two points, called K and K�.

The graphene unit cell contains two atoms; each of them has
one � orbital, so there are two electronic states for each point
of the first Brillouin zone �we disregard the electron spin�.
Thus, there are exactly four electronic states with zero en-
ergy. An arbitrary linear combination of them is represented
by a four-component column vector �. States with low en-
ergy are obtained by including a smooth position dependence
��r�, r��x ,y�. The low-energy Hamiltonian has the Dirac
form20 �hereinafter we imply the summation over the spin
indices�

Ĥel =� d2r �̂†�r��− iv� · ���̂�r� . �1�

We prefer not to give the explicit form of the isospin matri-
ces ����x ,�y�, which depends on the choice of basis �the
specific arrangement of the components in the column ��.
We only note that all 16 generators of the SU�4� group, form-
ing the basis in the space of 4�4 Hermitian matrices, can be
classified according to the irreducible representations of C6v,
the point group of the graphene crystal �Tables I and II�.
They can be represented as products of two mutually
commuting algebras of Pauli matrices �x ,�y ,�z and
�x ,�y ,�z,

21,22 which fixes their algebraic relations. By defi-
nition, �x ,�y are the matrices, diagonal in the K ,K� sub-
space, and transforming according to the E1 representation of
C6v. The Fermi velocity v�108 cm /s.

The Hamiltonian of the long-range Coulomb interaction
between electrons has the form

Ĥee =
e2

2
� d2r d2r�

	̂�r�	̂�r��
�r − r��

, 	̂�r� = �̂†�r��̂�r� . �2�

The background dielectric constant of the substrate is incor-
porated into e2.

TABLE I. Irreducible representations of the group C6v and their
characters.

C6v E C2 2C3 2C6 
a,b,c 
a,b,c�

A1 1 1 1 1 1 1

A2 1 1 1 1 −1 −1

B2 1 −1 1 −1 1 −1

B1 1 −1 1 −1 −1 1

E1 2 −2 −1 1 0 0

E2 2 2 −1 −1 0 0

PHYSICAL REVIEW B 77, 041409�R� �2008�

RAPID COMMUNICATIONS

1098-0121/2008/77�4�/041409�4� ©2008 The American Physical Society041409-1

http://dx.doi.org/10.1103/PhysRevB.77.041409


For low-energy electronic states EPC is efficient if the
phonon wave vector is close to the �, K, or K� point. Con-
sidering only in-plane displacements, we have four degrees
of freedom per unit cell. Consider the � point first. Two
modes are acoustic; they weakly couple to electrons, and are
neglected. The other two correspond to E2 �pseudovector�
optical phonons, shown in Fig. 1. They couple to the elec-
tronic motion via the KK�-diagonal E2 matrices from Table
II. The K and K� points are related by time-reversal symme-
try, so the phonon frequencies are the same, and one can
form real linear combinations of the modes from K and K�.
They transform according to A1, B1, A2, B2, E1, and E2 rep-
resentations of C6v, and couple to the electronic motion via
corresponding KK�-off-diagonal matrices. Linear coupling to
A2 and B2 displacements is forbidden by time-reversal sym-
metry, and coupling to the E1 and E2 modes is numerically
small.23 The reason for this smallness is that E1 and E2 dis-
placements do not change any C-C bond length; in the tight-
binding approximation this coupling simply vanishes. Thus,
we restrict our attention to the E2 modes from the � point
and A1 and B1 combinations of the modes from the K and K�
points, shown in Fig. 1. They are the only modes seen in the
Raman spectra of graphene.1–5

We take the magnitude of the carbon atom displacement
as the normal coordinate for each mode, denoted by u�, �
=x ,y ,a ,b for the four modes, shown in Fig. 1, respectively.
Upon quantization of the phonon field, û� and the phonon

Hamiltonian Ĥph are expressed in terms of the creation and

annihilation operators b̂q�
† and b̂q� as

û��r� = �
q

b̂q�eiq·r + H.c.
�2NM��

, Ĥph = �
q,�

��b̂q�
† b̂q�. �3�

The crystal is assumed to have the area LxLy, and to contain
N carbon atoms of mass M. The q summation is performed

as �q→LxLy 	d2q / �2��2. H.c. stands for the Hermitian con-
jugate. The two degenerate E2 modes have the frequency
�E2

�0.196 eV. As the A1 and B1 modes represent real linear
combinations of modes from the K and K� points, they have
the same frequency �A1

�0.170 eV, and appear with the
same coupling constant in the EPC Hamiltonian:

ĤEPC =� d2r �̂†�r�
�
�

F�û��r��������̂�r�

=� d2r �̂†�r��FE2
ûx�r��z�y − ûy�r��z�x�

+ FA1
ûa�r��x�z + ûb�r��y�z���̂�r� . �4�

The coupling constants FE2
and FA1

are not related by any
symmetry. However, in the tight-binding model FE2

=FA1
=3��t0 /�a�, where t0 is the nearest-neighbor coupling matrix
element, and a is the bond length.

As we are interested in energies much higher than the
temperature T, we set T=0; still, calculations are much more
transparent in the Matsubara representation. Electron and
phonon Green’s functions are given by

G�p,i�� = −
i� + vp · �

�2 + �vp�2 , D��i�� = −
2��

�2 + ��
2 ; �5�

their graphical representation is shown in Fig. 2. The elec-
tronic self-energy is a sum of the Coulomb15 and EPC �Ref.
24� contributions: �=�ee+�ph, shown in Fig. 3.

The leading logarithmic term in �ee is given by15

�ee�p,i�� = −� d�

2�

d2q

�2��2V�q,i��G�p − q,i� − i��

�
8

�2N
f�g��2i� − vp · ��

− f̃�g��i� − vp · ���ln
max

min
, �6�

f�g� = 1 −
�

2g
+

arccos g

g�1 − g2
, f̃�g� =

g arccos g
�1 − g2

, �7�

TABLE II. Classification of 4�4 Hermitian matrices by irre-
ducible representations of the C6v group. Matrices joined by braces
transform through each other under translations. “Irrep” indicates
an irreducible representation

Irrep A1 B1 A2 B2 E1 E2

Valley-diagonal matrices

Matrix 1 �z �z �z�z �x ,�y −�z�y ,�z�x

Valley-off-diagonal matrices

Matrix �x�z �y�z �x �y �x�y ,−�x�x �y�x ,�y�y

2 xE : u E : u2 y 1 aA : u B : u1 b

FIG. 1. Phonon displacements for E2, A1, and B1 modes.

p, ε
= − iε + vp · Σ

(iε)2 − (vp)2 q, ω, µ
= − 2ωµ

(iω)2 − ω2
µ

= − Fµ (ΛΣ)µ√
2MωµN/LxLy q, ω

= −2πe2

q

FIG. 2. Analytical expressions of the diagrammatic
technique.

−Σ(p, iε)

−V (q, iω)

FIG. 3. Electron self-energy due to the screened Coulomb inter-
action and the EPC.
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V�q,i�� =
16g

N
v
q

��vq�2 + �2

gvq + ��vq�2 + �2
, g =

�Ne2

8v
. �8�

N=4 is the number of Dirac species, valley and spin
degeneracy taken into account. The lower cutoff min
�max�vp ,��; the upper cutoff max�v /a is of the order of
the electronic bandwidth. The logarithmic divergence in the
Fock self-energy �ee is due to the long-distance nature of the
Coulomb interaction, and thus is not picked up by local ap-
proximations such as the LDA or GGA. The random phase
approximation �RPA� for V�q , i��, shown in Fig. 3, corre-
sponds to expansion of the prelogarithm coefficient to the
leading order in the parameter 1 /N=0.25, assumed to be
small. This is justified better than expansion in the dimen-
sionless coupling constant g, obtained with the bare coupling
2�e2 /q. Indeed, for N=4 we have g= �� /2��e2 /v��3.4;
background dielectric screening reduces it to g�1.

The leading logarithmic asymptotics of �ph is given by

�ph�i�� = −� d�

2�

d2q

�2��2�
�

F�
2

2M��

�27a2

4
D��i��

� �����G�p − q,i� − i�������

�
�E2

+ �A1

2�
i� ln

max

min
, �� =

F�
2

M��v2

�27a2

4
.

�9�

Here min�max�� ,���, max�v /a, and �27a2 /4 is the area
per carbon atom. The dimensionless constants �E2

and �A1
will be treated as small parameters.

The latter statement deserves some discussion. In prin-
ciple, one could proceed analogously to the Coulomb case:
instead of doing the perturbative expansion in ��, one could
dress the bare phonon propagators by the appropriate polar-
ization operators ��q , i��, corresponding to 1 /N expansion.
Since ��q , i���q at ��q�1 /a,25 the dressed phonon fre-
quency would grow as �q, and �ph would no longer diverge
logarithmically. However, the inelastic x-ray scattering data
for the phonon dispersion26 show that the phonon dispersion
is smaller than the phonon frequency itself. Thus, the renor-
malization of the phonon frequency remains small even at
q�1 /a, so the perturbative expansion in �� is more justified.

The logarithmically divergent integrals in Eqs. �6� and �9�
have different structure due to different form of the screened
interaction V�q , i�� and the phonon propagator D��i��. In
Eq. �6� the integral is dominated by the frequencies ���
�vq, while in Eq. �9� it is �� � ���, since D��i���1 /�2 at
������. Thus, in the calculation of the leading logarithmic
asymptotics it is sufficient to approximate D��i���
−2�����. This substitution makes the phonon propagator
�combined with EPC vertices� formally analogous to the cor-
relator of static disorder potential �i.e., from the point of
view of electrons with ���� the lattice is effectively fro-
zen�. Thus, renormalizations due to EPC at ���� are
equivalent to those due to static disorder.17–19,22 This equiva-
lence holds only in the leading order in EPC, since in higher
orders the phonon propagator is dressed by polarization
loops, and the static disorder correlator is not.

The presence of the large logarithm invalidates the first-
order expansion in 1 /N, and makes it necessary to sum all
leading logarithmic terms ��1 /N�nlnn of the perturbation
theory. This is done using the standard RG procedure.13–19

Let us introduce the running cutoff maxe
−�. One RG step

consists of reducing the cutoff, �→�+��, so that e−���1,
while �1 /N����1, �����1. The inverse Green’s function
transforms as

i� − vp · � − ��p,i�� =
i� − �v + �v�p · �

1 + �Z
, �10�

where �Z is chosen to preserve the coefficient at i� upon
rescaling of the electronic fields, �→ �1+�Z /2��: �Z
=���p , i�� /��i��. Then v is renormalized as

�v
v

=
���p,i��

��i��
+

���p,i��
��vp · ��

. �11�

Next, we determine renormalization of the coupling con-
stants. The electron charge e is not changed, as guaranteed
by the gauge invariance, so the renormalization of the Cou-
lomb coupling constant g is determined by the velocity v.
For the EPC, logarithmic vertex corrections of the order
O�1 /N ,��

2 � are shown in Fig. 4. Two other diagrams �Fig. 5�
should be taken into account, as they are of the same order
and also logarithmic. As a result, we obtain the following RG
equations:

dg

d�
= −

8f�g�
�2N

g +
�E2

+ �A1

2�
g , �12a�

d�E2

d�
=

�A1

2

2�
, �12b�

d�A1

d�
=

16f�g�
�2N

�A1
. �12c�

Because of the diagrams of Fig. 5, the renormalized �� can-
not be related to a new EPC vertex F�. Iterations of these

(a) (b) (c) (d) (e) (f)

FIG. 4. Logarithmic corrections to the EPC vertex F� of the
order O�1 /N ,��

2 �. Diagrams �c�–�f� vanish.

FIG. 5. Logarithmic diagrams of the order O���
2 � not reduced to

a renormalization of the EPC vertex F�.
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diagrams generate electron coupling to multiphonon excita-
tions, all included in the renormalized ��.

The coupling constant �E2
at energies ��E2

�0.2 eV can
be extracted from the experimental data of Ref. 5 �change of
the Raman G peak with the electron density�: �E2

�0.035,
corresponding to FE2

=6 eV /Å. Then the main effect comes
from the Coulomb terms: as f�g��0, g flows to weak
coupling,15 �A1

is enhanced, while the enhancement of �E2
,

proportional to �A1

2 , is much weaker due to the cancellation
between Coulomb self-energy and vertex corrections. This
behavior is in qualitative agreement with the Raman data:
when the ��

2 term is neglected, the ratio of the intensities of
the two-phonon peaks, mentioned in the introduction, is
ID* / IG*=2��A1

/�E2
�2.12 If only Coulomb terms are kept in

Eqs. �12�, their integration gives �A1
��� /�A1

�0�= g�0� /
g����2= v��� /v�0��2, which, in principle, can be checked ex-
perimentally.

To study the behavior of the coupling constants quantita-
tively, we solve Eqs. �12� numerically, neglecting the ��

2

term. The largest value of � is determined by the lower cutoff
min����0.2 eV. In Fig. 6, we show the flow of �A1

for
three values of the bare Coulomb coupling constant: g�0�
=3.4 �corresponding to no dielectric screening at all�, 1.5,
and 0.5. The bare values of the electron-phonon coupling
constants �E2

�0�=0.035, �A1
�0�=0.040 were chosen �a� to

satisfy the relation �E2
�0� /�A1

�0�=�A1
/�E2

, valid in the
tight-binding approximation, and �b� to reproduce the experi-
mental value �E2

�0.035. For electronic energies ��1 eV,
involved in the Raman scattering, in the totally unscreened
case, g�0�=3.4, we obtain �A1

/�E2
�3.2, in agreement with

the observed ratio ID* / IG*�20. Note that the RPA calcula-
tion without the RG collection of all leading logarithmic
terms would give all dependencies in Fig. 6 to be straight
lines with slopes fixed at 10 eV. A comparable error would

be produced by the GW approximation, which neglects ver-
tex corrections, and thus picks up correctly only the first term
of the logarithmic series.

To conclude, in this paper we have considered the mutual
effect of the weak electron-phonon and strong Coulomb in-
teractions on each other by summing up leading logarithmic
corrections via the renormalization group approach in the
intermediate energy range �E2

,�A1
���v /a. At these ener-

gies quantum fluctuations of the phonon field may be viewed
as effective static disorder. We find that Coulomb interaction
enhances electron coupling to the intervalley A1 optical
phonons, but not to the intravalley E2 phonons, in agreement
with the experimental data for two-phonon Raman scatter-
ing.
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dashed, and dotted curves�. The constant �E2

=0.035 is unchanged
in the order O���.
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